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Aii alguiiiiun for symmetric sparse equaticin wiutions on an unstructured grid is described. Efficient. sequen- 
tial sparse algorithm4 for degree-of-freedom reordering. supernodes. synbolictnumerical factorization. and for- 
ward+ackaard solution phases are reviewed. Three sparse algorithms for the generation and assemblv of sFmmet- 
ric systems of matri\ equations are prewnted. The amrac? and numerical performance of the sequential version 
of the rparse algorithms are evaluated oier the frequency range of interest in a three-dimensional aeroacoustics 
application. Results show that the soher solution4 are accurate using a discretization of 12 points per wavelength. 
Rewits also 4hou that the tirst assemhl! algorirhm is impractical for high-frequenc! noise calculations. The 4ec- 
ond and third assemhl! algorithms ha\e nearl? equal performance at lou d u e s  of source frquencies. but at 
higher \alue4 of wurce frequencies the third deorithm saves CPC' time and RAW The CPL time and the R.411 
required h! the wxmnd and third ashemhi! aleurithmc are orders of magnitude *mailer than that required 
b! the sparw equation \ol\er. .\ sequential \ errion of these sparse algorithms can. therefore. be conveniently in- 
corpcirated into a \ub*tructuring tor domain decompmitioni formulation to achiete parallel computation. \\here 
diffcrent whstructures are handld I)! different parallel priwwirs. 

Sumenclature 
1.41. IF1 = glohal hriffnehc matrix and load iector 

i . i / .  I F ]  = global d f n w  matrix and load, \ectcr 
ui thout  bource effects 

N ith rource effects 
: ; E ] .  IC']. IF] = local dement niatricch for I rigid \\ai! duct 

. {An'). {ul = one-dirnemional arrays containing 
main\ cocfticients 

= rlemcnr stiffnrhs matrix and load\ \siror ~ .{ ' 1. IF'''') 
A / / .  .I;'. t /  = complex matris coefticients 
I I .  IF1 = contributions to the element rtiifneh\ 

marrix due to the exit plane and 
interior elements 
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= diagonal and unit lower triangular matrices 
= value of held variable at local node I 
= element degrcr-of-freedom man\ :  
= discrete error vector 
= error and three-dimensional barn t'unctiont 
= t i l l  in resulting from matril tactorir.mon 
= I th component of 1 f 1 
= ( F )  vector of lcngth A' 
= \ourcc frequency and free 

space wave number 
= height. length. and width of 

three-dimensional duct 
= matrix of pointers for sparse assembl! 
= coefficient of the  I th  row and J t h  column 

of [ H A  J 
= [ H A ]  an N x M matrix 
= height. length. and width of 

three-dimensional finite element 
= m a y  containing the number of nonzeroe.; 

per row 
= m a y s  of starting locations of nonzero 

coetticients 
= permutation and inverse permutation 

\ectors 
= array of row and column indexes for 

nonzero matrix coefficients 

= m a y  containing the column numbers 
of the nonzero off-diagonal 
matrix coefficients 

= amy of element connectivities 
= a m y  of element numbers connected 

to each degree of freedom 

= .-I 
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number of n~NerO coefficients in a sparse 
manix. N + N l  
maximum number of elements connected 
to a degree of freedom 
array of element numbers connected to a 
degree of freedom 
array containing the number of elements 
connected to a degree of freedom 
master degree-of-freedom m a \  
maximum number of nonzero coefficients 
per row 
number of unknowns in the nnirc element 
discretization 
number of finite elements and degrees of 
freedom per element 
number of fi l l  ins during factonzation of a 
matrix 
total number of transverse. spanwise. and 
axial nodes 
number of nonzero. off-diagonal 
coefticients before factonzation 
number of nonzero. off-diagonal 
coefticients after factorization 
acoustic pressure tield 
acoustic pressure at local node w 2nd 
source pressure 
relative error norm and uniiomi 110n \peed 
surface and voiume of a tiniie eiemmt 
nonzero value that \va\ modined during 
matrix factorization 
Cartesian coordinates 
transverse. spanwise. and axial 1oi.itions 
of grid lines 
dimensionless esit admittance 
derivative of the acoustic preswre 
normal to 3 suriace 
dimensittiiles\ \tall and esit impcdance 
global vector of unknowns 
local vectors of unknowns 
intermediate ectors for fomard and 
backward submution 
vector componcnts 
gradient vector and Laplace operator 
vector dot product 

exit and source plane index 
factored and reordered matnx 
forward and backward substitution 
rou and column index of 3 matnx 

truss element number 
gnd line locator tor three-dimenslonal duct 
matnx or vector transpose 
complex conjugate 

I. Introduction 
HREE-DIMENSIOSXL aeroacoustics codes that can ~ C C U -  T ratel!. predict the noise radiated from commerciai aircraft are 

needed.! Currently. noise prediction codes require the use of a linear 
equation solver before radiated noise can be predicted. An optimizer 
must then run the noise predictive code on a digital computer hun- 
dreds of times IO achieve an aircraft design with a minimal noise 
radiation signature. 

Currently. industry and government aircraft noise predictive 
codes are either two-dimensional or treat only axisymmeuic noise 
signatures.' When the volumes are three-dimensional. the currently 
used equation solvers require an excessive amount of CPU time 

low-frequency sound sources in two-dimensional or axisjmmetri,- 
environments. 

Sparse equation solving technologies'-" have been &veloFs, 
and are well documented for several engineering applications. -r. .: 
the computational advantage of sparse solver technology o,e. :. 
more conventional rechnologies (such as band or skyline sOi . . 
has been demonstrated. In addition. for practical engineering :,:- 
cations. system matrix equations must be developed for an un,[rMb- 
tured grid to which boundary conditions are often difficult 10 

The finite element method is the simplest for generating the s!~~?, - . ,  
matrix on an unstruitured grid. 

Only recently have sparse solver technologies been appliej 
aeroxousIics.i.ii In Ref. :. several direci and iterative equa:ion 
solvers were evaluated to determine their applicability IO i,\ (,- 
dimensional duct aeroacoustics computaiions with the direct ~ p , ~ ; , . ~  
solver emerging 35 the mohr promising. In Ref. IS. sparse \,> 
equation solving methodology was extended to three-dimensl 
acoustically lined ducti. However. the work presented in Re: ,: 

adopted the assembly strategy that is currently available in the 
erarure for assembling system sparse matrix equations. This simrii. 
bur inefficient assembiy siraiegy p r e c i u h  iiir use u i  sparse soi\ crr 
for three-dimensional aeroxoustic computations. '' 

Most. if nor all. major codes for analysis and optimal design ,d- 
Ion users to select either iterative or direct equation solver>. for 
nacelle aeroxoustic'r computations. iterative solvers are not 3 i  m- 
bu\t as direct solvers because the nacelle equation system I S  po~:l! 
conditioned.' Iterative solutionmethods. when app1iedtos)sten.- 
poori) conditioned equations. have the disadvantage that the! dti 
ccinierge. or the! converge very slowly. .A further disad\mtafr < I :  

applying iterative solution methods t o  solve the nacelle equation h h  .- 
tern is that the nacelle equation system often contains multipir rlpni- 
hand \ides. Iterati\ c methods are not a\ efficient as direct metho& nn 
equation systems \vith multiple nghi-hand sides because the equ3- 
tion system must be reformed and resolved for each right-hand \!de. 

The long-term objective ofthis research is to acquire the capahil- 
it! to design quiet aircraft in a fully three-dimensional aeroacowic' 
environment using direct sparse solver technologies and the fai!i. 
element mcthcdog!.. The current paper has rwo objectives. Thi. :.-.' 
ohjtctive is t o  bridge the gap bet\veen the aeroacousticians 3 i. 

may not have a comprehensive knowledge of sparse assemhl! 2:iti 

equation solver technologresr and members of the sparse re>?Li<n 
community (who may not have comprehensive knowledge of ti- 
nite element analysis and ;?eroacous~ics~. The second objecti\c !' 10 
present efricient algorithms for assembling s p n e  matrix equa!ionh. 

Section I1 descnbes three sparse assembly algorithms for =. P-ner- 
ating systems of sparse linear equations. Section 111 describe. the 
template that is used to develop a complete. unstructured grid. ti- 
nite element code. that is. equation reordering. symbolic/numer:cJl 
factorization. supemodesfloop unrolling. and fonvard/backu ari! *I - 

lution phases. Section 1V presents a detailed formulation of t k  1 
ement stiffness matrices that will be assembled using the span: 2.- 

sembly algorithms to form the system matrix for a three-dimen?l@nal 
duct aeroacoustics application. Finally. Sec. V discusses the JXU- 
racy and numencal performance of the developed algorithms over 
the frequency range of interest for a three-dimensional aeroacoustics 
application. Note that although the sparse algorithms presenre3 3'- 

sume that the system matix equation is symmetric. these algoritnn15 
are easily extendible to nonsqrmmerric systems of equations. Thr 
algorithms can also be conveniently incorporated into a subilruc- 
turing (or domain decomposition I formuiarion to take advanr;l:r 
parallel compuntion to further reduce CPU time and RAM. 

11. Sparse Assembly Algorithms 
for Symmetric Sytems 

Figure 1 is a twodimensional truss (or rod) structure assembled 
from individual truss elements labeled (1). (2), . . . , (13) that are 
interconnected at eight nodes labeled 1.2. . . . ,8. An elemen: ) of 
the structure is assumed to possess only two points of connection- 
and the external loads are assumed to be applied at the nodes of the 
mss elements. Only a single de-- of freedom (Don at each node 
is assumed. To further simDlifv discussions. it is assumed that. by a 

2nd RAhl for their assembly and soiution. This excessive CPC time 4 separate calculation. the eiemint stiffness mamx and external load 
and comuuter storage restrics aircraft noise predictior. codes to 

! vector for the truss element ( e )  are known and expressed as 
~~ ~ 



Uhough onl? ,I \ingle DOF \ @, I is assumed 21 node I .  the dis- 
. w o n  to tollou I \  ejcil) evrsnded to u DOF per noas b> extending 

2 Loetticients in  I 41. that I \  4,'' .IO q x q suom~rnces. The rules 
q bubmatnx as mtrix algebra iiould then oe applied to each y 

t liere a bcalar 

L Sparse Dau  Formats for the Jvstem Matris 

.:\\umed that the element stiffness matrix IS sgmmetnc so that 
For the sake of brevity. 13 rne discussions to follow it will be 

1 * 
X 

Fig. 1 -0-dimensional truss sample problem. 

[A"'L, = [A'"],, (6) 

Under the assumptions of Eq. (6).  the system mami [ .4 I is also 

The \parse descriptions of any symmetric system m m x  I ,-I ] [\re 
is tully described by the four one-dimensional vectors Eq. 

Ill A I ?  . (10) 

B. appiicatron of Boundar! Conditions 
In most engineenng applwtons .  the field \msbi;: at several 

bounds? noaes may require constraints 10 satist! a Dincniet bound- 
L.  condition of the form 

\\nerc J, is the specified value of the field \.anaSlc 21 node 1. 
Dinciiier boundan. conditions may be applied 21 thr Aernent or 
system Ievei. The impact of applying Dirichlet b o u x d q  conditions 
on the system matnx equation is identicai ivhetne: sppiied at the 
clement or cystem level. We will show the relativeiy tasy process 
of applying Dirichlet boundary conditions at the slement level and 
their impact on the system matrix equation [Eq. t2J].  

The process for inserting the Dirichlet b o u n a q  condition. 
{ @ I ;  =d,. is 3s follows: 

1 '\ The coiumn of corresponding 10 the I rh DOF is multi- 
plied by d,. md the result is subtracted from ( Ftr1) .  

5 
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2)  The column corresponding to the I th  DOF in [A("] is made 

-. 3) The row corresponding to the I th DOF in [A("] is made zero. 
4) The modified element matrix and the modified element load 

5) [A]// IS made equal to unity. and { F], is made equal to J,. 
Thus. applying Dinchlet boundan. conditions to the system ma- 

zero. . 
vector are assembled. 

m\  equation modifies Eq. ( 2 )  to 

[,i](@l = {PI (121 

r - 
!JC( 1 1 1 )  = 17.7.  1.7.4.4.1.7.5.5.5.3.3.5.5.6.6.6.S. S.8)'  

and the follou ins integer matrix: 

1 0 0 0 0 0 1 0  
1 1 1 )  0 0 0 1 0 0 1 0  

1 0 0 1 0 0 0 0  
1 1 0 0 0 0 0 0  
1 0 0 0 1 0 0 0  
0 0 0 1 1 0 0 0  

[€ ( .M. .S l ]=  0 1 1 0 0 0 0 0 
0 1  0 0  I O 0 0  
0 0  I O  1 0 0 0  
0 0 0 0 1 1 0 0  
0 0  1 0 0  1 0 0  
0 0 1 0 0 0 0 1  

- 2 3 6 7  

13 15 IS 19 0 
1 5 1 1 0 0  
I O  16 0 0 0 

1 0 0 0 0  
2 0 0 0 0 0  

(15) [ H.4 .I.. .LIZ I ]  = 

The t ~ v o  one-dimensional integer vectors in Eqs. (13, and (141 are h 0 0 0 0 0 1 0 1  - 

d x  [ A ]  *ill have rhese nonzero tcnns. The exact locatiom tmH 
& column numbers I of those three nonzero terms in [ A ]  be 
Eferred to as 6164 

( I R R J A  = 4. (JC)a  = 7. {IRJ = 4 

(JQ = 4. (IRJI; =4. (JCJ11 = 5 ( 1 ,  

122: 

Thus. the three nonzzm terms of the founh row of [ A ]  are located ;il 
row 4. column 7 :  rou L. column 1: and row1. column 5 .  respecti\+ 
iue Es. U)I. . -  

The num_erical values of the coefficients in the modified c!s~em 
main\ 1.41 remain unchanged from those in ( A ] .  elcept for 3 feu 
;ha; are mads zero during the application of the Dirichlet b o u n d q  
conditions. Therefore. ue  will illustrate application of the assembly 
31gorithms to the nonzero pattern of [A ] .  

The integer m a t m  ;HA] and system matrix [ A ]  can be altema. 
lively stored as one-limensional vectors: 

{ho( . t f ) ]  = f2.3.6. -. 9.8. 12. 11. 13. 15. 18. 19. 

4.5. 1 1 .  IO. IO. 1'. 31. 1.20)' (1' 

C. Sparse Assembly Algorithms 
Three symmetric sparse assembly algorithms will be expiained 

i n  rhi\ section. The purpose of Fach assembly algorithm IS  to fen- 
sratc the system loads vector { f . }  and the four vectors denned ny 
Eqz. ! & I O ) .  which correspond to [ A ] .  The assembly algonrhms 
arc dixcused \ianing u i th the simplest and proceeding to the most 
complex. 

The main ideas of a!gc.rithm 2 can be wmmarized by the follo\ving 
compurationsl tasks: 

I ) After initialinns ihu} IO a zero vector. process all elements ( i n  

ascending order) IO ?Stain the integer vector< ( I R }  and { J C )  ~ h i k  
assembling 1.41 into !J]. 

2 )  Separatc the di2;onaI an3 nonzero off-diagonal temis of 14 
from [ ( I !  and store th:. information in (AD1 and {AV} .  Separate ti-. 
diagonal and off-diagcnal temis in I /R)  and (JC} .  and compute V.4 
and (!A]. 

where 

I 



(rig. i ). 1 ne concep or an elemenr-uur matrix is easily exrended 
to q DOF per node by extending tafh of the unity coefficients in 
[ E ]  to a q  x q identity mapix. 

* To minimize &e RAM, it is Comrenimt to descr ik  rhe element- 
DOF matrix [ E ]  by the two one-dimensional vectors 

(IE(NE + I )}  = [ l .  3.5.7.9.  11,  13. 15, 17, 19,21.23.25.27)' 

a. 

: 
= I  

(23) 
(JEO\'€ x N P ) )  = 17. 1.7.4.4. 1. 1.2. I .  5, 

45.2.3.5.2.5.3.5.6.6.3.3.8.6.S)' (21) 

m d  the transpose of the element-DOF matrix ( [ € I r )  by the follow- 
ing two one-dimensional vectors: 

(fn(.l' A 1)) = { I .  5 . 8 .  12. 15.20.23.25. 27' ( 2 5 )  

!JET(,\€ x N P I !  = { I .  3 .4 .5 .4 .7 .8 ,? ,9 .  !!. ! ? . 2 . ? .  

6 . 5 . 6 , s .  9. 10. 10. 1 I .  13. 1.7. 12. 13)' (261 

The main ideas of algorithm 3 can be summarized by the followin: 

!! .ksume :hs: ! / E ; .  {I&;. [;ETi, aid {YrT?) have aiready been 
computationai tasks: 

detined from the connectivity information (see Fig. 11. 
a) Compute (IC) and (J.4) (symbolic ssembly  phase I .  

b )  Cornpure ( / A )  from Eq. (30). 
2 )  Assume [hat vectors ( I A )  and [JA) have alread!. been derined 

from rhe symbolic 3ssembl> (task 1 ).Compute (.4,V) and {.4Dj from 
[ ; \ ' I  I ]  ~numencal assembl! phase I. 

111. Sparse Algorithms for Solving 
Spmetrical Equations 

In this section. the major tasks involved in solving \pane \ys- 
:i.m\ of linear equations are brietly explained. The S U C C ~ S ~  ~t ihe 
\parst' bolver i >  due 10 improved technologies (Le.. equation re- 
ordering. matrix decornpo4on. superncdes and ICWP unrolling. ior- 
\vard:hadiward wlurion phases ) and bookkeeping strategieS ideal 
for implementation on 3 digital computer. More drtailud information 
on improved technologir.3 can be obtained from Refs. 2-11. 

[ A ( . \ .  .Y)]  = 

,A. Sparse Reordering Algorithms 
.After !mpo\ing the boundary condition\. rhe moditied stirini.ss 

m t r i \  [ .4 I can be obtaincd from 1 A I as indicated in the di\cus\ions 
.-tore Eq. 12). Equation ( 121 \hould iievcir be \olved directl!. To 
runher xirnpiify rhe Ji lcuswns. we will aswmr. that mairix .i; 113 
rhr tollowing numericlri values: 

- l o 6 6 0 0 0  
0 2 O I I l O  

1271 

1 5 0 0 1 8 8 0  
3 o o o o u  1 

Thw. in this case 3' = 6 3nd .V 1 = 6. During the factorizarion phase. 
man! of the zero-value terms appearing in Eq. (27)  ma! become 
nonzero. For masimum efficiency of storage and solution time. rhr 
equarions are reordered so that the number of nonzero terms thst 
occur during factorization are minimged. These extra nonzero terms 
Crclrted during the tacronzarion of [ A ]  are referred to as till ins 3nd 
are denoted by the symbols F in the folloumg equation: 

1 X X X 0 X . Y  
X F X F F  

ln kq. (B,, o n e m  eight exna (or new] noms0 nR m. As a result, 

N F = 8  Do- (29) 
f -c 

N2= N l + N F = 6 + 8 =  14 (30) 

In general, the number of nonzero coefficients in the upper triangular 
pan of [ .1] after factorization ( N 2 )  is much larger than those before 
factonzation ( N  11. 

The purpose of reordennp algonrhms [multiple minimum degrees 
(MND),  nested dissection. or AIETIS algonthms] IS to rearrmge 
the nonzero terms of [A] .  defined m Eq. (17). to different locnions 
so rhat .V2 is minimized_' '*-" For example. applLing the fI3ID 
reoroenng algonthm to [ A ]  s i l l  result in the foIlo\ring permutarion 
and inverse permutation \ ecrors: 

{fP(.V)) = (5.6.3. 1.4. 2 ) r .  (A'OV)) = (1.6.3.5. 1. 2 ) r  

( 3 ;  I 

With the permutation am! ;/P}. the m a t m  [A] in Eq. (?? t can be 
transtormed into 

1 "  44 0 0 3 0 1  

(321 
I 0 0 8 8 5  0 
0 0 6 6 0  1 

[ i R ( ' V .  .\',I = 

0 3 1 5 110 7 
' 0 0 0  7 112 

\ON. if one tactorizes 1 i,]. there \ % i l l  be onl! one t i l l  111 rhdt 
occurs. J) tollw \: 

1 s 0 0 x 0 f 
s 0 0 .Y 0 

1 1 s .Y 
s 

R. Sparse S?rnhoiir Fartyization 

one-dimensional vectors: 
The reordered matns [ .-\R j can bs described b! [he td lou  i n s  tour 

( / A ( ' %  - I I) = { I .  -3.4.5.6.7.7)' 

{JA(.\'II~ = {4 .6 . j . 5 .5 .6} '  (3-11 

( A D ( i Y ) )  = j 11. 44.66. 88.  I 10. 1121' 

(Ahr(JYlil  = ( l .2 .3 .1 .5 .7 lT  (351 

In rhis example. .V = 6 and .Y 1 = 6. Before performing rhe numer- 
ical factorization. it  is  necessary IO go through thc. sparse \!mbolic 
factorization. so that the tollou kng hold true: 

1)  The nonzero pattern of [ .4RF] can be determined iincluding 
the locations of till ins I .  

2 )  The value of N ?  can be determined so that adequarr com- 
puter memory can be allocared for the subsequent sparse numerical 
facrorization phase. 
On completion of !he sparse symbolic iactonzarion phase. the 

nonzero patterns of [ .4RFj x e  completely k_no\vn. and the moditied 
vcrsion j of Eqs. (31) and I 35 J for the tacrored marnx . ~ K F  j <an he 
computed as 

{/AriV- 1 1 1  = ( l . 3 . 1 . 5 . 7 . 8 . ~ ) '  

(JA(A'2) )  = !1. 6.5. 5.5.6. 6IT (361 

In rhis case. 

N ? =  l ' I - : \ F = 6 + 1 = 7  (371 

Efficient sparse symbolic factorization algorithms and detailed 
FORTRr\N coding can be round el~ewhere.-.~-' 



C. FindingSupnaodrs 
To understand the concept of a supemode tor master node). notice 

that. in q. (33). 2-3 and 4-5 have the same nonzero panerns. 
That is. the nonzero terms in rows 2-3 correspond to the same 
column numbers. Equation (33) can be used IO define a master DOF 
vector 

(!kf5Sc A')} = { 1.3.0.:. 0. 1 y  (38) 

?e master DOF t ector (MS} is based on the assumed system matnh 
[ A R ~ ]  defined in Eq I 33). Once Eq. (35 I has been defined. effective 
loop-unrolling techniques' 23 can be used to improve computational 
speed dunng the sparse numencal factonzation phase. 

D. Sparse Sumerical Factorization Phase 
The strategies employed in this phase are quite similar to the ones 

used during the sparse symbolic factonzation phase and have been 
well documented in the Tne reordered system matrix 
! 1 can be decomposed or factorized as 

l & l =  14[c:4T (39 1 

Here. ID] I C  a diagonal and [ L ]  i \  unit  iower triangular matril. and 

I ( 1  = 1. .I = 2 .  . . . . .I' ) 

1 1 1  I 

E. 
The \ (hi ion IU the \!stem matrix e;a3t:or, [Eq. ! I ? ) ]  i \  obtained 

in thret. phases: 
I ) in thr. nrst  phase ifonrard so1u:ion phase). an intermediate 

solution vector (@FF) is computed t r m  the solution ofthe matrix 
equation 

Solution IO the S!*tem Zlatrix Equation 

[ L l l @ F F l =  : F R I  (42) 

2 )  In the second phase (backward soiurion phase). a vector (@BE) 
is computed from the matnx equation 

[~l[flr(@BBl = 1 @ F F l  (43 ) 

3) ln  the thirdphase(backrransformxionphasel.thevector ( @ B B )  
is transfomed back to the original unkfi0u.n vector [ @ ]  by utilizing 
the inverse permutation vector IN}. 

IV. Three-Dimensional Aeroacoustics Application 
The de\eloped a1,oorithm will be exercised to study the propa- 

p i o n  otacoustic pressure waves in 3 :nree-dimensional duct lined 
with sound absorbing marerials (acoust;; iiners, as depicted in Fig. 2.  
The duct is spanned by axial coordinare :. transverse coordinate .I-. 

and spanuise coordinate y. The source plane is located at 1 = 0. and 
the source plane acoustic pressure pI is assumed known. At the exit 
plane. the dimensionless exit acoustic impedance (;lll is assumed 
known. In the duct. air is flowing-along the positive z axis at a sub- 
sonic speed of uo. and the duct has acoustic liners along its upper, 
lower. and two sidewalls. The duct walls are assumed to be locally 
reacting so that the sound absorbing propwries of the acoustic liners 
results from the dimensionless wall impedance < that is assumed 
known. The sound source pressure. dimensionless exit impedance, 
and dimensionless wall impedance are assumed functions of p s i -  8 
tion along their respective boundaries. 

pressure. 7. 

Fig. 2 Tinrw-ciimeiinio~aii7li: dix:  2nd cc;crdins!e rystem. 

A. \lathematical Formulation 
The mathematical formulalion c ~ f  the duct acoustics probleni 

(Fig. 2.1 does not lead to a bounuay value problem that i h  for- 
mall! >elf-adjoint and will not Itad to a zymmetric system ma- 
t r ix  when airflow is considered. Thw. the malysis in the foregoing 
discussion does not allo\v for airfiou becau>e the current paper fo- 
cuses on symmetric systems. With zero airflon in the duct ( i l p ,  = 0 I 
the niathematical problem is to rind ths solution to Helmholrz'. 
equation I' 

T2p t L::7 = 0 (41 

Along the hource plane of the duct I: =OI. the hounda? condition 
is given in term of a Dirichlet boundary condition: 

p = p ,  (45 I 

The \\.all boundav condition is 

At the duct termination (: = L 1. t k  i3110 cf acoustic pressure IO the 
axial component of acoustic panici: ielocity is proponional to the 
knobvn dimensionless exit impedance. IVhen expressed in term5 of 
the acoustic pressure. this bounds? rondition is 

(17, 

Equations (5.117) form a wel!-posed boundary value problem 
for which exact solutions for the a:oustic pressure field are = Oener- 
ally not linown. A solution for the acoustic pressure field satisfying 
this boundan value problem is required to predict and reduce the 
radiated noise. An approximate solution for the acoustic pressure 
field can be obtained using nurnencal techniques such as the finite 
element method. 

B. Finite Element hlodel 
The approximate solution for t h t  sound field in the duct is ob- 

tained by subdividing the duct and representing the acoustic tiel~: 
within each subdivision by relativti)- simpie functions. Because the 
duct of interest is a rectangular prism. the computational domain is 
divided into a number of smaller rectangular prisms (or elements) 
as shown in Fig. 3. These elements are considered interconnected at 
joints called nodes. The most widely used method for locating the 
nodes in the discretization is to divide the physical volume into m. 
M .  and hZ grid lines in the s. J. and z directions. respectively. as 
s h o w  in Fig. 3. Each node of an element can be located by iden- 
tifyins an ordered triplet. (XI, JJ. z ~ ) .  Similarly, each element in 
the assemblage can be identified by an ordered triplet of integers 
(I, J. K). A typical rectangular prim element ( I .  J .  K) is shown 
in Fig. 4. Each element consists of eight local node numbers labeled 
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Fig. 3 Three-dimensional finite element discretization. 
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Typical thret.-dimen\ionaI clement and local ride numbering 

, 
i. 2 . .  . . . 8. Each i'kment I \  conudercd to have a dinien4ion ef  I!. 
w .  and I in  the l. .. . and : dirsctions. re>p:L$\rly. 35 \ho\\n. 

( C. Element Stifhe\\ \!atri\ 
Galtrkin.\ tinirs clement method i s  used to compute the rlrment 

stiffness matrix. The tleld error function 1 4  detined as 

(48) E ,  = '?:,I i- k ' p  

Wthin tach element. p 15 represented as a linear combination of 
.:ight functions. .\:. .Y:. . . . . .Yy. 

(49) 

9 

The linear combination [Es. (49)] comprises a complete set of basis 
functions. 

Fora typical element (I, J .  K ) ,  contributions to the minimization 
of the rield error function due to local nodem overthe computational 
volume I '  are 1 E,;\', dC' = l [ V 2 p  + k ' p ] N ,  d l '  (51 j 

The second derivative terms in Eq. (51 are reduced to tirst deriva- 
tives using Green's second identity 

(52) 

Elimination of the second derivative terms from the \c!u-e :ng- 
g a l  in Eq. ( 5  1 is required so that rhe linear basis functions ,V,, 
can be used. Elimination of the second derivative terms from the 
volums inteprsl also has  the advantage that all impedance boundar?, 
conditions can be incorporated into the surface integral of Eq. 152). 
Thi:, d lous  a choice of basis functions that do nor have to satisfy 
explic:ily an! impedance boundary conditions. The ~onrribution to 
the \uc'3ce Integral 

(53) 

I\ i j e x a l l !  zero for all dements swept thow that lie dong 
3n imr:Jinie boundary. Substituting the r ~ i f  boundar! condition 
[Eq ,4-1 j  into the wrfacr  integral in Eq. 1531 gives 

alon; :he ryi:  houndac. whereas for elements that lis ~ilong the 
uppsr. !oucr. and sidewalls of the duct 

The ;.mrritrutlon to the minimization of the rield m o r  ior each 
tlemx:. ,.\hen collected lor each o t  the right loc~il node\ ! T I .  is 
exprr\*td in matrix. form as 

l E, N ,  d1' 

E, IV: J1' l 
E,iVxdl' 

(5.61 

In  Eq. 261. I@" is an 8 x I column \ m o r  for each element 
ionrainmg the unknown acous!ic pre5su:es 2: :hc eighr 1oc;Li nodes 
of the tisment 

{ @ ' . K ' ] '  = { P I .  P:. p ? .  p;.  p ! .  p,. p - .  p ? ~  
7 

( 5 7 )  

~ h c  s~emenr marrix [A{' . ' .~ ' ]  is an 8 x S complex symmetric 
matrix tor each element ( I .  J. K ) .  In the special case o f 3  hard \vail 



Here. [F] represents the contribution to due 10 the element 
volume 1'. uhereas ( B )  represents the contributions due IO the exit 
plane b o u n d a ~  . The matrices ['PI and [ B ]  are symmetric. and their 
coefticients h a c  been computed explicitly: 

1 

2 1 2  
8 4 2  
1 x 2  
2 2 x  
1 - 1 4  

L 2 

-1 
- I  

I 
3 - 

1 
4 

-1 
7 - - 

IhOl 

thl  I 

1 1: - 1 ' 2 I -2 -1 -2 - 1  
- - 1 2 -4 -2 - I  -2 

j ' 1 2 - 1  -2 -1 - 2  

1621 

1631 

V. Results and Discussion 
Th- ihrri.-Jimensional rigid irall acou\tic elenicnt ha.; been cou- 

plcd u i t h  thc sparsc asscmbl! and rquarion \olier dgorirhms to 
pro\ idc a w n i h l y  and solver statistics for a threc-Jimtn5ional duct 
xrodioustic4 application. Computations presented in this paper 
u t x  run on 3 singlc processor tvith double-prccihn cN-biti xith- 
mtiii on ai1 ORIGIN 2oOO computer platform. The \parse equation 
\ t i l \  rr II\CL! \1I lD rrordering. Computation\ a:? pre5ented for :: 
unitomi ;rid and a geometry identical to that o i  the Lanyle! Flou 
Impd;incc Tubc. Thi\ three-dimensional duct has H square cross 
\c'ciic'n 0.050S m in u idth (I\. = H = 0.05OS rn ; and 0.8 12 m in 
lrn:tli tL =O.S12 mi. A more detailed descripiion of ths  duct is 
y e n  in Re!. 15. All calculation6 were performed at standard at- 
rnmpheric anditions without flou. and the source frequenc! was 
c h w n  to >pan the full range of frequencies currenil! of interest in 
duct liner mearch. The sound \vas chosen as a plane nave ( p >  = 1 1. 
and thr  dimen5ionless exit impedance \\'as chosen 33 unity i<c\lt = I I. 
Thi4 exit impedance will simulate a nonreflecting terminarion for 
the plane uave source. 

Table I presents CPU statistics tin seconds, for each of the three 
awmbly  algorithms and the sparse equation solver a5 a function of 
the hource trequency f. in kilohertz. The CPC rime for the solver 
ccolumn 9 I i s  that required to obtain the solution \ ector after the sys- 
tem matnx was assembled. Note that before obuininy the solution 
vector. the \!stem matrices obtained from each sssembly algorithm 
\\ere compared to each other. Each asembly algorithm assembled 
the idsnrical \!'stem matrix as expected. Also included in Table 1 are 
ths number of :rid lines NX. .A?'. and A'Z and the matns order .\ Ih31 
\vert used tf i  perform the computations at each irequency. Here 
ha\? used the generally accepted rule that 12 poinrs per \va\elength 
is rquired to resolve a cut-on mode in each coordinare direction. To 
establish the accuracy of the solver solutions. the relati\e error norm 
(Relerri. computed from the solver solution vector. \vas tabulated in 
the tinal coiumn of Table 1. The relative error norm: is defined as 

IO 
where 

{EN)' x {EN)T 
( F ) =  x { F ) T  

Relerr = (66) 



- 
,' ' 3  
W e 4  f NX M' N &omtun: Aigoxi&m2 A.lgmlnn3 Sober R e b  

4.00 6 6 114 4,104 4920 OW 022 
7-00 12 12 200 28.800 106.80 250 1.75 

487.80 7.5 x IO-" 11.00 18 18 313 101.412 1.13.80 9.05 2-28 
3.120.00 3.4 x IO-" 14.00 24 24 399 ~ 9 . 8 2 4  s.s20.60 20.74 14.24 

17.00 30 30 184 435.600 19.488.00 39.78 26.94 lO.440.00 3.2 x IO-" 
21.00 36 36 599 776.304 N/A 73.8 1 48.35 NM N/A 

6Ml 6.5 x 
22.80 1.8 x 

Table 2 RAM statistics tin mepb!tesi fnr the sparse algorithms 

f N .v I Algorithm 2 Algorithm 3 Solver 

4.00 4.104 4l.46R 0.47 0.46 4 .OO 
7.00 28.800 731.244 21.00 11.00 80.00 
11.00 101.412 !.'16.118 72.00 37 .w 6.10.00 
14.00 229.824 2.512.838 165.00 83.00 2.1-W.00 
!7.00 435.6%? f.3'36.InX1 j i i . ( ? U  158.00 5.100.00 
21.00 776.304 9.696.158 5 5 1 . 0  283.00 UIA 

Tabular results af 21 kHz are not presented for assembly algorithm I 
and the sparse equation solver because of the exce\\i\e CPL' lime 
required by these trio algorithms. 

Although algonrhm I is extremely \imple. its perfommce is 
extremely slon (Table I ). Note that algorithm I is I45 time\ slower 
than the other t u n  algorithms at a frequency of  4 kHz and more 
than 490 times ilo\\er af 17 kHz. Tabular rewlrs alw shot\ that the 
CPU time required !o assemble the >!stem marri\ using alipithm 1 
exceeds that required 10 obtain the \olurion iector b! l)olS \ (or 
87'; ) at 17 kHz. .Ai low frequencies. dgorithrn 2 is onl! ,liptitl\ 
,lo\ver [hail alpon!hrr! .3. bc! AS the :'itqiicnc! increa\cs IO i; kHz. 
algorithm 3 -32'; h t e r  than algorithm 2. Generdl!. the higher 
the frequency. the better the performance of algorithm 3. rdatiie to  
that of algorithm 2 .  Furthermore. in w i n g  algorithm 2. tht u\cr ha\ 
IO guess the maximum number of nonzcro icm\ per rnu I \I21 to 
allocate the RAX1 tor !he matrix [/[.4 1. h h .  thc CPC time\ rquired 
to assemble the \!\rem matrix using dgori thni  2 or algorithm 3 are 
both more than t\%o orders of magnitude le\\ than the time rtyuirLxj 
io obtain the solution \ector. Finally. Relsrr I \  \mall. indicating that 
the colver solution I \  accur;itc. 

Table 2 she\\\ thi. RAM (in megabyte\t tor algorithm 2 .  Ago- 
rirhm 3. and the \ p m e  equation solver. R M l  \talktic\ tor a l p -  
rithni 1 were not :abuIatcd hecause i t \  pertimi3ncc \.\a\ elitrcrnely 
\IOU when compmd 10 algorithm 2 and Jlgorithni 1 (as \ h w n  in 
Table I 1. Value\ orthe variables A' and .Y I are also gi icn in TJbk 1. 
The results shou thai !he number o t  ott-diagon;il nonzcro ioeffi- 
cients I N  I 1 also 
\bows that algorithm i requires les\ memory than algorithm 1 be- 
cause algorithm 2 n u \ t  allocate RAX1 tor 5torlng vectors {IRi. UC]. 
and [Ha-\]  [see Eqs. 1 1-3-15)]. Note aI\o that memory required by the 
sparse equation \ol\sr is substantiall! larger than that required for 
assembly algorithm 2 or algorithm 3. Thi\ I \  tunher ieritication that 
most ofthe RAX1 Alomed is used during matrix factorization. Pre- 
liminary results trom tests conducted by the authors have sugyeaxJ 
that the performance of the sparse equation solver may improve if 
the .solver ivere to use 1IETIS instead of 3lblD reordering. For ex- 
ample. at 7 kHz the cumber of nonzero\ after tacrorization i V 2  I was 
reduced from J.X.39 I with MhlD reordering IO only 4.3-6.496 
when the METIS reoidering algorithm uah used. 

VI. Conclusions 
A template for Gymmetric sparse equation assembi!- and wlutions 

on an unstructured 2nd has been presented. The accuracy and nu- 
merical pertbrmanc: of the sparse algorithms have been e\ aiuared 
over the frequent! range of interest In 3 three-dimensional 2eroa- 
coustics application. Based on the results ofthis study. the iolloiving 
conclusions are drau n: 

I ) Assembly aigonrhm 1 is impractical for system matrix 3sxm- 
bly at high values or source frequent!.. It requires up to 8 7 5  more 
CPU time to assemble the system marrix than the sparse equation 
solver requires to obrain the solution vector. 

an Ordrr of magnitude IJrgc'r than .\. Table 

2 )  Xssembty algorithms 2 and 3 have nearly equal performances 
at IOU. values of source frequency. but algorithm 3 gii'es savings 
in both CPL lime (315) and RAM (50%) at the higher values of 
source frequency. 

3) Error norm statistics show that the sparse equation +elver com- 
putes accurate acoustic solutions over the frequency range of interest 
for ihe chree-dimensionai aeroacoustics application. 

4) At high frequency ( 17 kHz I. the sparse equation solver requires 
low memo?. but requires significant speed-up before optimizatrlon 
studies (either of the duct geometr)r or liner material properties) are 
practical. This research supports a recommendation. therefore. that 
a parallel version of rhe sparse sr?!ut.r he de:e!~pcd. =IC CP'i rime 
and R.4X.I required by assembly algorithms 2 and 3 are nvo orders of 
magnitude smaller than that required by the sparse equation solver. 
These algorithms can. therefore. be conveniently incorporated into 
a substructuring (or domain decomposition) formulation (provided 
that each substructure is handled by different processors1 to rake 
advantage of parallel computation to funher reduce CPL time and 
R X 1 .  
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